
In the pursuit of (ground) truth: A hand-labelling tool for eye movements
recorded during dynamic scene viewing
Ioannis Agtzidis∗ Mikhail Startsev† Michael Dorr‡

Technical University Munich

ABSTRACT

We here present parts of our ongoing work to facilitate the large-
scale analysis of smooth pursuit eye movements made while view-
ing dynamic natural scenes. Classification of smooth pursuit
episodes can be difficult in the presence of eye-tracking noise, and
we thus recently proposed an algorithm that clusters gaze record-
ings from several observers in order to improve classification ro-
bustness. We now implemented a publicly available tool that al-
lows for generation of a ground truth benchmark by assisted hand-
labelling of video gaze data. Based on the labelling produced with
the tool we present preliminary evaluation results for our smooth
pursuit classification approach in comparison to state-of-the-art al-
gorithms. Overall, human observers spend more than 12% of their
viewing time performing smooth pursuit, which emphasizes the im-
portance of investigating smooth pursuit behaviour in naturalistic
contexts.

Index Terms: H.5.2 [Information Interfaces And Presenta-
tion]: User Interface—Evaluation; H.5.2 [Information Interfaces
And Presentation]: User Interface—Interaction styles; I.5.3 [Pat-
tern Recognition]: Clustering—Algorithms; I.5.5 [Pattern Recog-
nition]: Implementation—Interactive systems

1 INTRODUCTION

Because of the space-variant resolution of the human retina, eye
movements are a fundamental component of visual information
processing. For many extensively studied visual tasks such as read-
ing or inspecting an image, the eyes alternate between fixations,
mostly stationary phases in which visual information is being pro-
cessed, and saccades, rapid ballistic movements that bring the fovea
to new informative regions of the stimulus. When dynamic stimuli
are being presented, however, the eyes may also perform smooth
pursuit movements that track moving targets to keep them foveated.
While smooth pursuit eye movement behaviour has been investi-
gated in depth using simple, synthetic stimuli such as moving dots
on an otherwise blank background, there is still a need to better un-
derstand smooth pursuits in more complex, naturalistic paradigms
and tasks such as video-watching or even navigation in the real
world. In these contexts, the exact trajectories of potential pursuit
targets are often not known a priori, and in the absence of a clear in-
struction to pursue certain objects, a post-hoc classification of gaze
data into fixations, saccades, and episodes of smooth pursuit has
to be performed. Because of their potentially low speed, smooth
pursuit eye movements are hard to distinguish from fixations, es-
pecially in noisy gaze recordings. A recently developed approach
to classify smooth pursuits made while viewing naturalistic videos
[1] now aims at increasing reliability by using information across
multiple observers: After an initial step that labels those fixations

∗e-mail: ioannis.agtzidis@tum.de
†e-mail: mikhail.startsev@tum.de
‡e-mail: michael.dorr@tum.de

and saccades that were detected with high confidence (very low
and very high speed, respectively), remaining samples are classified
as smooth pursuit only if other observers exhibited a similar gaze
pattern at the same spatio-temporal video location. By contrast,
noise in the gaze recording and other eye movement types should
be independent across observers, and idiosyncratic gaze patterns
that are neither (confidently detected) fixation nor saccade are thus
labelled as noise. In a pilot evaluation [1], this approach yielded
very promising results, outperforming existing algorithms [2, 6]
that only look at the gaze traces of individual observers in isola-
tion. Notably, our approach improved both precision and recall,
even though the original design goal was to only filter out noise, i.e.
increase precision. This evaluation was based on a “ground truth”
that was obtained with a very simplified Matlab tool. This tool al-
lowed the labelling of gaze only in relatively coarse time windows
of 250 ms each, and without visualizing the video stimulus and the
corresponding gaze data at multiple time scales.

For a more thorough evaluation of our novel eye movement clas-
sification algorithm and other algorithms that detect smooth pursuit
episodes, however, a solid large-scale ground truth would be desir-
able. Typically, human raters are used to establish such a baseline,
even though it should be stressed that in the absence of electrophys-
iological recordings, the ground truth may only be inferred based on
the observed, potentially noisy, gaze signal, which may even suffer
from artefacts due to eye-tracking technology [8]. At any rate, man-
ual labelling needs tools to support this arduous task. Existing ap-
proaches typically support the coding only of fixation and saccades
[7, 11]. For the coding of smooth pursuit episodes, the tool should
also provide an appropriate visualization of the stimulus video with
its moving objects, i.e. potential pursuit targets.

In the following, we shall present our ongoing work towards such
a tool that assists the user in hand-labelling eye movement data that
was recorded while viewing dynamic stimuli. After a brief review
of automated smooth pursuit detection, we shall describe this tool
that simultaneously visualizes gaze data and the moving image con-
tent. We shall also review the use of the popular ARFF file format
for eye-tracking data.

Finally, we shall present first results for our algorithm and
two state-of-the-art smooth pursuit detectors [2, 6] run against the
ground truth obtained with this tool on a subset of the GazeCom
data set [3].

2 AUTOMATIC SMOOTH PURSUIT DETECTION

2.1 Data set
In this work we use the publicly available GazeCom eye move-
ment data set. More than 50 observers were freely viewing 18 short
video clips (20 s each) depicting outdoor scenes in and around a city
with a number of potential pursuit targets, such as moving cars and
pedestrians.

This data set was chosen partly because of its size: with an ap-
propriate tool it is still possible to hand-label the entire set within
a reasonable time interval. Overall, the data set comprises about 5
hours of gaze recordings at 250 Hz; in our ongoing effort to have
multiple raters label the entire data set, however, we initially fo-
cus on only a subset of about 28 minutes that has been used in a



previous study [1].

2.2 Proposed smooth pursuit detection algorithm
We here briefly review our smooth pursuit detection algorithm
based on clustering the gaze points of multiple observers simultane-
ously in space and time [1]. The idea behind this is that if we leave
out the samples that represent fixations or saccades, what is left
should normally occur in the same place at the same time only in
the case of smooth pursuits. Other, idiosyncratic gaze motion types
and even more so any tracker-induced artefacts should exhibit less
spatio-temporal dependence on the presented stimuli.

Consequently one can look at the proposed approach as the fol-
lowing pipeline:

1. Discard gaze samples that were reliably classified as fixation
or saccade, respectively

2. Perform clustering in 3-dimensional space (x, y, t coordinates
of the gaze sample): detecting “dense” groups of samples and
marking them as clusters. To make use of different proper-
ties of gaze traces (e.g. velocity direction or speed), higher-
dimensional spaces may also be employed.

3. Optionally, perform post-processing to remove some clusters
that are unlikely to represent smooth pursuit:

• too few observers within one cluster
• duration of the cluster is too short to make a smooth

pursuit possible
• high directional variance across gaze trajectories of dif-

ferent observers within one cluster

4. Optionally, merge some clusters based on their similarity

3 LABELLING TOOL

The designed tool is a hybrid between automatic labelling such as
described above and pure hand labelling of eye movements. As a
first step, eye movements are detected algorithmically with every
algorithm output occupying a column in the data file. Then, we add
an extra column for hand labelling and we populate it with the most
frequent label for each sample from the algorithmic part. Finally,
the user can manipulate the suggested eye movement labels through
the provided interface. An example screenshot is shown in Fig. 1.

3.1 UI
The interaction with the user is handled through four panels. The
user is able to scroll through the video by dragging the “current
position” marker on either of the right-side panels.

3.1.1 Playback panels
On the left half of the window we display the video itself and a
dense velocity field of the video on the top and the bottom panels,
respectively, if either is available. Here, the velocity field was pre-
computed with the EpicFlow algorithm [10]; in principle, however,
any feature map with the dimensions of the original video may be
used.

The video panel also displays the gaze samples from a 200 ms
temporal window centred at the current time. In order to visualize
temporal order, “history” samples (before the current time position)
are represented by red circles, and “future” samples by gray circles.
The last sample up to the current time position is indicated by a
green circle.

The flow panel additionally displays a rectangle that visualizes
the spatial support of all gaze samples that are visible in the video
panel. Because the size of the rectangle is proportional to the dis-
persion of gaze, it is indicative of fixations (low dispersion) and
saccades (high dispersion).

The mean of the velocity field inside this rectangle is displayed
in the coordinate system on the top left part of the flow panel as
a red vector. The mean of the sample-to-sample gaze points ve-
locity for the visible samples is illustrated by a blue vector. These
visualizations show the similarity between image motion and corre-
sponding eye motion: a smooth pursuit that follows a moving target
with near-perfect gain should yield equal vectors, whereas very dif-
ferent directions are likely indicative of an eye movement other than
smooth pursuit.

3.1.2 Interactive panels

On the right half of the application window we display the plots for
x and y coordinates of the eye movement data over time t. These
panels handle most of the user actions.

The background colour represents the most frequently assigned
label to each sample from the algorithmically detected eye move-
ments in order to speed-up hand labelling by providing relevant
suggestions.

These background colours also serve the purpose of separating
the entire sequence of gaze samples into intervals of different type
(i.e. they may have have different labels: fixation, saccade, smooth
pursuit, noise, or not yet labelled).

Most of the user interaction activity is dealing with these inter-
vals. The following actions can be performed through these panels
(the right side of the window):

• Right-clicking and dragging moves the current position in
time (backwards or forwards according to the direction of the
mouse movement).

• Scrolling the mouse wheel changes the temporal scale, i.e.
increases or decreases (according to the scroll direction) the
temporal window represented by the plots on the right-side
panels.

• Left-clicking and dragging expands (moves) the borders of the
interval, where the left click occured.

• Holding the left-click on an interval and pressing a number
on the keyboard changes the label of the interval. The legend
provides information on the correspondence between num-
bers and the assigned labels.

• The sequence of a left-click, a number key press and finally
pressing the Insert key inserts a new interval of the selected
type spanning a temporal window of ± 40 ms around the cur-
rent time; this interval can then be adjusted as above.

• The sequence of a left-click and pressing the Delete key unas-
signs the label of the selected interval.

The interaction is completed with some standard keyboard short-
cuts:

• Pressing Space key starts playing or pauses the video.

• Pressing Ctrl-Z reverts the last change.

• Pressing Ctrl-Shift-Z acts as “redo” (reapplies the last can-
celled change).

The last two shortcuts are platform-dependent. The application
menu contains the information about all the used key sequences,
including the correct values for the platform-dependent ones.



Figure 1: Screenshot of the labelling tool. The video with overlaid gaze traces is playing in the top left, while x- and y-coordinates are plotted as
a function of time t on the right. The bottom left panel shows a dense velocity field for the video and the average gaze and image velocity vectors
in a spatio-temporal neighbourhood around the point of regard.

3.2 Extendable data file format ARFF

An ARFF (Attribute-Relation File Format) file is a text file that de-
scribes a list of instances sharing a set of attributes. This file format
is used for example in WEKA [4], a machine learning software
suite very popular in the data mining community. The popularity of
ARFF files is mirrored by a plethora of tools for manipulating them
in a variety of languages such as Python, C++, Java, Matlab, R, etc.
The use of a common standard with bindings to many programming
languages could be beneficial to the eye tracking tracking commu-
nity, with its proprietary file formats used by each group separately,
and may foster scientific content exchange as well as speed up the
evaluation of ideas.

In ARFF, all keywords start with a “@” symbol and the follow-
ing names are case-insensitive; all lines starting with “%” are con-
sidered comments.

Any file comprises two sections for a header and the data. The
header starts with “@relation”, which defines the relation name.
After this, the attributes can be declared through the “@attribute”
keyword followed by the name and type of the attribute.

The data section starts with the “@data” keyword. The further
lines describe the instances with one instance per line and comma-
separated attributes. The attributes should follow the same order
used for their declaration in the header section.

In our implementation, we introduce minor deviations from the
regular ARFF format, but maintain major conventions and thus
keep the compatibility with WEKA. Since an eye-tracking exper-
iment needs information about the video resolution and the dimen-
sions of the monitor, we introduce “special” comments (maintain-
ing ARFF compatibility) with the “%@metadata” notation. So far,
the pixelx, pixely, dimensionx, dimensiony and distance values are
handled (describing the vital parameters of an eye-tracking data
recording: monitor resolution and physical dimensions as well as
the viewing distance from the observer’s eyes to the monitor).

An example of such an ARFF file with meta-attributes is pre-

sented below. At the beginning we see the name of the relation
described in this file followed by five lines of metadata about the
experiment. The following three attributes represent data that were
returned from the eyetracker. The subsequent attributes in this ex-
ample hold labels that were returned from algorithms that detect
smooth pursuit (SP-DBSCAN, a variant of the algorithm described
in section 2.2), saccades (I-VVT – identification with a velocity-
velocity threshold), and fixations (I-DT – identification with a dis-
persion threshold), respectively, and hand-assigned labels.

After all information about the experiment and the attributes is
given, the “@data” keyword marks the start of the data instances.
In the data section the first instance was marked as saccade by the
dual velocity threshold algorithm and the expert agreed. The next
sample was left unassigned by all the algorithms but the expert as-
signed it to the following fixation. Finally the last two gaze samples
(instances) were detected as fixations by the dispersion threshold
algorithm and the expert labeller agreed.

Listing 1: Sample ARFF file.
@RELATION g a z e l a b e l s

%@METADATA PIXELX 1280
%@METADATA PIXELY 720
%@METADATA DISTANCE 0 . 4 5
%@METADATA DIMENSIONX 0 . 4 0
%@METADATA DIMENSIONY 0 . 2 3

@ATTRIBUTE t ime NUMERIC
@ATTRIBUTE x NUMERIC
@ATTRIBUTE y NUMERIC
@ATTRIBUTE sp−dbscan NUMERIC
@ATTRIBUTE i−v v t NUMERIC
@ATTRIBUTE i−d t NUMERIC
@ATTRIBUTE handLabe l1 NUMERIC



% Labe l t y p e s f o r t h e 4 a t t r i b u t e s above
% NOT ASSIGNED 0
% FIXATION 1
% SACCADE 2
% SP 3
% NOISE 4

@DATA
1 0 0 0 , 4 1 6 . 9 0 , 1 8 8 . 0 0 , 0 , 2 , 0 , 2
5 0 0 0 , 4 1 7 . 0 0 , 1 8 8 . 1 0 , 0 , 0 , 0 , 1
9 0 0 0 , 4 1 7 . 0 0 , 1 8 9 . 2 0 , 0 , 0 , 1 , 1
1 3 0 0 0 , 4 1 7 . 1 0 , 1 9 0 . 3 0 , 0 , 0 , 1 , 1

3.3 Implementation
The implementation is separated in two parts. The first part is the
UI that enables the hand labelling itself. The second part is a li-
brary providing manipulation functionality for ARFF files with the
constraints of the previous section.

The UI is written in C++ with Qt 5 providing the infrastructure.
By using Qt we obtain a strong foundation for a responsive UI and
the ability to run on different platforms. The video playback uses
the Qt multimedia library; tests at least on the Ubuntu Linux 14.04
platform were performed to ensure that seeking backwards and for-
wards does not introduce accumulating timing errors.

For the modified, yet standard-compatible ARFF files we imple-
mented a simple C++ library. This library provides reading/writing
from file, addition/deletion of attributes and some other useful oper-
ations such as the majority vote of labels assigned to each instance.

The tool and its source code are publicly available at
http://www.michaeldorr.de/gaze labelling.

4 RESULTS

We use the ground truth labels obtained with the presented tool to
evaluate several smooth pursuit detection algorithms. Classification
performance of our algorithm with three different clustering meth-
ods (Graph-based, SP-DBSCAN, and SP-LST) as well as two state-
of-the-art algorithms is shown in Table 1. These results are qualita-
tively very similar to those obtained with a previous hand-labelling
tool that had only coarse temporal resolution [1]; F1 scores now
slightly improved, likely due to the a more fine-grained labelling
that results in fewer samples being labelled as smooth pursuit. It
is worth noting that to prevent bias the suggested (automatically
detected) “smooth pursuit” labels were hidden from the experts.
Hand-labelling of 20 s of gaze data with the proposed tool took an
expert user about 3 to 5 minutes.

Overall, about 12.7% of all gaze samples in the GazeCom sub-
set studied here were manually labelled as smooth pursuit; for the
algorithms, this rate ranged from 2% to 7%.

5 DISCUSSION

In this paper, we reported on ongoing work to analyse eye move-
ments made while viewing dynamic natural scenes, with an empha-
sis on smooth pursuit eye movements. To this end, we implemented
a tool to quickly and reliably hand-label a “ground truth” of gaze
data.

One obvious limitation of the current tool is that visualization
and labelling are still limited to the gaze traces of one individual
observer at a time, even though our results show that – automatic
– classification of eye movements may benefit from the integration
of information across several observers. It thus could be helpful to
extend the tool with a visualization of multiple observers at a time,
similar to the iSeeCube approach [5].

A further limitation concerns the algorithmic approach for
smooth pursuit classification. With naturalistic videos presented on
a computer screen, all observers see the same stimulus, and spatio-
temporal clustering of gaze data is thus straightforward. For truly

Table 1: Precision, recall, F1 and false positive rate (FPR) throughout
all the ground truth data.

Precision Recall F1 FPR
Graph-based 0.843 0.462 0.597 0.012
SP-DBSCAN 0.859 0.449 0.590 0.010
SP-LST 0.944 0.144 0.251 0.001
Berg et al. 0.561 0.372 0.447 0.041
Larsson et al. 0.477 0.229 0.310 0.035

naturalistic environments, e.g. recordings by head-mounted cam-
eras from subjects freely interacting with the real world, this is not
the case anymore, and more sophisticated approaches are required;
one possibility would be to attempt to automatically match image
regions [9].

Finally, our results show that in naturalistic videos, observers
spend a substantial amount of time following moving targets with
smooth pursuit eye movements, much more than detected by auto-
mated eye movement analysis, where the best algorithm still had
less than 50% recall. Further study of both eye movement classifi-
cation and smooth pursuit in naturalistic contexts therefore seems
desirable.

ACKNOWLEDGEMENTS

This research was supported by the Elite Network Bavaria, funded
by the Bavarian State Ministry for Research and Education.

REFERENCES

[1] I. Agtzidis, M. Startsev, and M. Dorr. Smooth pursuit detection based
on multiple observers. In Proceedings of the Ninth Biennial ACM Sym-
posium on Eye Tracking Research & Applications, ETRA ’16, pages
303–306, New York, NY, USA, 2016. ACM.

[2] D. J. Berg, S. E. Boehnke, R. A. Marino, D. P. Munoz, and L. Itti.
Free viewing of dynamic stimuli by humans and monkeys. Journal of
Vision, 9(5):1–15, 5 2009.

[3] M. Dorr, T. Martinetz, K. Gegenfurtner, and E. Barth. Variability of
eye movements when viewing dynamic natural scenes. Journal of
Vision, 10(10):1–17, 2010.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA data mining software: An update. SIGKDD Ex-
plor. Newsl., 11(1):10–18, Nov. 2009.

[5] K. Kurzhals, F. Heimerl, and D. Weiskopf. ISeeCube: Visual analy-
sis of gaze data for video. In Proceedings of the Symposium on Eye
Tracking Research and Applications, ETRA ’14, pages 43–50, New
York, NY, USA, 2014. ACM.

[6] L. Larsson, M. Nyström, R. Andersson, and M. Stridh. Detection of
fixations and smooth pursuit movements in high-speed eye-tracking
data. Biomedical Signal Processing and Control, 18:145–152, 2015.

[7] S. M. Munn, L. Stefano, and J. B. Pelz. Fixation-identification in dy-
namic scenes: Comparing an automated algorithm to manual coding.
In Proceedings of the 5th symposium on Applied perception in graph-
ics and visualization, pages 33–42. ACM, 2008.

[8] M. Nyström, I. Hooge, and K. Holmqvist. Post-saccadic oscillations
in eye movement data recorded with pupil-based eye trackers reflect
motion of the pupil inside the iris. Vision research, 92:59–66, 2013.

[9] D. F. Pontillo, T. B. Kinsman, and J. B. Pelz. SemantiCode: Us-
ing content similarity and database-driven matching to code wearable
eyetracker gaze data. In Proceedings of the 2010 Symposium on Eye-
Tracking Research & Applications, ETRA ’10, pages 267–270, New
York, NY, USA, 2010. ACM.

[10] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow:
Edge-Preserving Interpolation of Correspondences for Optical Flow.
In Computer Vision and Pattern Recognition, 2015.

[11] I. R. Saez de Urabain, M. H. Johnson, and T. J. Smith. Grafix: A semi-
automatic approach for parsing low- and high-quality eye-tracking
data. Behavior Research Methods, 47(1):53–72, 2015.

http://www.michaeldorr.de/gaze_labelling

	Introduction
	Automatic smooth pursuit detection
	Data set
	Proposed smooth pursuit detection algorithm

	Labelling tool
	UI
	Playback panels
	Interactive panels

	Extendable data file format ARFF
	Implementation

	Results
	Discussion

